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Abstract. The zero temperature quenching dynamics of the ferromagnetic Ising model on a densely con-
nected small world network is studied where long range bonds are added randomly with a finite probability
p. We find that in contrast to the sparsely connected networks and random graph, there is no freezing
and an initial random configuration of the spins reaches the equilibrium configuration within a very few
Monte Carlo time steps in the thermodynamic limit for any p �= 0. The residual energy and the number
of spins flipped at any time shows an exponential relaxation to equilibrium. The persistence probability
is also studied and it shows a saturation within a few time steps, the saturation value being 0.5 in the
thermodynamic limit. These results are explained in the light of the topological properties of the network
which is highly clustered and has a novel small world behaviour.

PACS. 89.75.-k Complex systems

1 Introduction

It is well known that the one dimensional Ising model
with nearest neighbour interaction does not have any non-
trivial phase transition. However, a drastic change is ob-
served in its critical behavior when even a few long range
interactions are added randomly. Such a one dimensional
lattice with extra random connections is known to behave
as a small-world network (SWN) [1–3], which means that
the average shortest distance between any two sites in this
lattice scales with the logarithm of the number of sites.
The Ising model on small world networks not only has a
finite temperature phase transition [4,5], but the critical
behavior is also mean-field like [6–11]. A network in which
the distribution of the number of links follows a power-law
is known as a scale free network (SFN). Here also a finite
temperature phase transition of the Ising model with a
diverging critical temperature [12] has been observed.

Recently, quite a few studies on the dynamical prop-
erties of the Ising model on random graphs as well as net-
works have been reported both at finite and zero tempera-
tures [13–19]. Dynamics of Ising models is a much studied
phenomenon and has emerged as a rich field of present-day
research. Models having same static critical behavior may
display different behavior when dynamic critical phenom-
ena are considered [20]. An important dynamical feature
commonly studied is the quenching phenomenon below
the critical temperature. In a quenching process, the sys-
tem has a disordered initial configuration corresponding
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to a high temperature and its temperature is suddenly
dropped. This results in quite a few interesting phenom-
ena like domain growth [21,22], persistence [23–27] etc.

In one dimension, a zero temperature quench of the
Ising model ultimately leads to the equilibrium configura-
tion, i.e., all spins point up (or down). The average domain
size D increases in time t as D(t) ∼ t1/z, where z is the
dynamical exponent. As the system coarsens, the mag-
netisation also grows in time as m(t) ∼ t1/2z. In two or
higher dimensions, however, the system does not always
reach equilibrium [27] although these scaling relations still
hold good.

Apart from the domain growth phenomenon, another
important dynamical behavior commonly studied is per-
sistence. In Ising model, persistence is simply the proba-
bility that a spin has not flipped till time t and is given
by P (t) ∼ t−θ. θ is called the persistence exponent and is
unrelated to any other static or dynamic exponents. Per-
sistence can also be studied at finite temperatures and the
exponent may change at the critical temperature [25,28].

We have studied the zero temperature quenching dy-
namics of the ferromagnetic Ising model on a SWN. It
is important to carefully describe the type of network
under consideration. There are two well-known meth-
ods of generating a small world network starting from a
chain of nodes having connections with nearest neighbours
only. These are (a) the addition type, where new long
range (LR) bonds are added randomly keeping the nearest
neighbour connections intact, and (b) the rewiring type
where the existing nearest neighbour bonds are rewired
to distant neighbours randomly. In the first case, when



392 The European Physical Journal B

bonds are added with probability p, the total number of
LR bonds is pN2 for large N (N is the number of nodes).
Even with p ∼ 1/N , i.e., with a finite number of LR
bonds, a phase transition has been observed in the Ising
model [5]. While considering the dynamics of Ising mod-
els on addition type network, again p = γ/N has been the
usual choice, where γ is a finite quantity. The dynamical
behaviour of such a network for any value of γ > 1 is
comparable to that of the random graph in the sense that
the system fails to reach its global minimum energy with
zero temperature Glauber dynamics even in the thermo-
dynamic limit [13,14]. Quenching dynamics of the Ising
model on the scale-free network has also been considered
recently [19] with an average connectivity k = pN for each
node. Here k was fixed such that p ∼ 1/N . The results
again show a freezing at zero temperature.

In our study, we have considered an addition type net-
work generated from a one-dimensional chain of Ising spins
with nearest neigbours. Here each node has pN number
of LR bonds with p fixed (i.e., finite in the limit N → ∞)
such that the network is a densely connected network. In
this network, we have shown that the freezing or block-
ing effect is removed for any p > 0 in the thermodynamic
limit. This conclusion is reached by studying various quan-
tities like the domain sizes, magnetisation, residual energy,
number of flipped spins etc. as functions of time. We also
find that the relaxation to the equilibrium state is expo-
nential.

The study of persistence of the Ising model on this net-
work shows that there is no algebraic decay as it reaches
a constant finite value similar to what happens in lattices
of dimension greater than three [25]. The behaviour of
P (t) with p is described in detail later in the paper.

In Section 2 we describe the dynamical model under
consideration and the physical quantities calculated. The
topological properties of the network are described in Sec-
tion 3 where we find that there is a novel behaviour of the
network as far as small world property is concerned. The
results are discussed in Section 4. Summary and some con-
clusive comments have been given in Section 5.

2 The models and dynamic properties studied

We have considered a one-dimensional ferromagnetic Ising
model on a network, in which, apart from nearest neigh-
bour links, there exist some random long range connec-
tions with probability p. The Hamiltonian for this sys-
tem is

H = −
∑

i

Jijsisj , (1)

where si = ±1 is the state of the spin at the ith site,
Jij = 1 for nearest neighbours and for other neighbours
equal to 1 with probability p. The Hamiltonian should be
divided by a factor of pN , however, at T = 0, only the
sign of the energy differences are required for the Glauber
dynamics and therefore this factor has not been included.
We have simulated this system with periodic boundary
condition. The initial configuration is random and single

spin flip Glauber dynamics has been used for subsequent
updating, i.e., a spin is picked up at random and flipped if
the resulting configuration has lower energy, never flipped
if the energy is raised and flipped with probability 1/2 if
there is no change in energy on flipping.

We have estimated the following quantities in the sys-
tem,

(1) Average domain size D(t) at time t.
(2) Magnetization m(t) as a function of time (the average

magnetisation being zero from symmetry, here m(t)
has been calculated by taking the average of the abso-
lute values of the magnetisation).

(3) Residual energy Er(t) = E(t)−Eg where Eg is the en-
ergy of the ground state and E(t) the energy at time t.

(4) Nflip(t), the number of spin flips at time t.
(5) Persistence probability P (t) defined as in Section 1.

When considering the domains, we have in mind the orig-
inal one-dimensional lattice and measure the domain size
along it.

In finite dimensional nearest neighbour Ising models,
the dynamics of these quantities is governed by the
exponents θ and z, i.e.,

D(t) ∼ t1/z

m(t) ∼ t1/2z

Er(t) ∼ t−1/z

Nflip(t) ∼ t−1/z

P (t) ∼ t−θ

with θ = 0.375 and z = 2 in one dimension.
In principle, it is not essential to study all these quanti-

ties to determine the characteristics of the dynamical sys-
tem. However, in a numerical study, it is better to check
that the behavior of these different quantities is consistent
with a single z and θ.

Since freezing is a key question here, we have also cal-
culated the freezing probability F (p) as a function of p for
various system sizes. Several other quantities and expo-
nents related to domain dynamics in the quenching phe-
nomena can be defined [29], but here we have restricted
our study to those mentioned above.

In the simulations, we have restricted the system sizes
to N ≤ 1000 as a large number of configurations is re-
quired to have accurate data. The results have been av-
eraged out over 1000 initial configurations and network
configurations (typically). As the network is densely con-
nected, the updatings consume a lot of CPU time forcing
us to restrict our study to rather small system sizes.

3 Topological properties of the network

The essential difference between a simple one dimensional
lattice with nearest neighbour links and the present net-
work lies in the topology of the networks. The topologi-
cal properties of a network like the average shortest dis-
tances 〈S〉 (here distance means number of steps required
to reach another node) and the clustering coefficient C
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Fig. 1. Average shortest distance 〈S〉 and clustering coefficient
C as functions of p for different system sizes. In both cases, the
values are lesser for larger N values.

may help in understanding the static and dynamical phe-
nomena of Ising model on such network. In the nearest
neighbour lattice, 〈S〉 is proportional to N and C is zero
(as there are no loops).

Super small world effect: the average shortest distance
behaves in the expected manner; 〈S〉 is very small (O(10))
for very small values of p and decreases to the exact
value 1 in the p → 1 limit. In a small world network,
the shortest distance is supposed to scale as ln(N). Here,
if p is kept fixed, 〈S〉 actually decreases with N show-
ing that it approaches the behaviour corresponding to
p = 1 in the thermodynamic limit. This is a novel be-
haviour which one can call a “super small world” effect
as noted earlier in [31]. One can also compare data for
different N ′s by keeping the number of edges per site,
pN , a constant rather than p. Therefore, in two networks
of size N1 and N2, the values of p are kept p1 and p2

respectively such that p1N1 = p2N2. We then observe
that 〈SN1,p1〉/〈SN2,p2〉 = ln(N1)/ ln(N2) which is true for
the conventional small world networks. For example, for
N1 = 100 and p1 = 0.05, 〈S100,p1〉 = 2.58 and for
N2 = 500 and p2 = 0.01, 〈S500,0.01〉 = 3.43, and the ratio
of these two quantities is very close to that of ln(100) and
ln(500).

The clustering coefficient is estimated in the standard
way: the probability that two neighbours of a particular
node are also connected to each other is a measure of the
clustering tendency. C is also calculated for different p and
N values. Obviously it increases with p and is equal to one
at p = 1 when all the nodes are connected to each other.
Since the nearest neighbours are already connected, clus-
tering coefficient would increase if the long range bonds
happen to be next nearest neighbours [32]. For small val-
ues of p, this is more probable in smaller lattices and there-
fore clustering coefficient shows a marked decrease with N .
Figure 1 shows the data for both 〈S〉 and C.

These results will be helpful to interpret the observa-
tions which we have made and will be referred to in the
later sections.

 

 

 

Fig. 2. Magnetisation m(t) and domain size D(t) as functions
of time t for different values of p with the system size N = 500.
Both saturate very quickly as p is increased.

4 Results and discussions

We first discuss the results for the growth of the do-
mains sizes and magnetisation. The domain sizes have
been scaled by the system sizes N such that D(t) ≤ 1.
We have verified that for p = 0, all the physical quanti-
ties under consideration follow the known behaviour sum-
marised in Section 2 (with z and θ assuming the values
corresponding to one dimension). As soon as a non-zero
p value is introduced, both m(t) and D(t) quickly reach
a saturation value such that a variation with time occurs
only over a short initial period of time (Fig. 2).

For small system sizes and at low p, the saturation val-
ues of m(t) and D(t) are far from those of the equilibrium
values (both unity at T = 0) similar to the results on ran-
dom graphs and sparsely connected small world networks.
This apparently suggests that the system gets “frozen”
in one of the metastable states. However, in the present
model, blocking seems to be effective only for finite sizes,
as the saturation values of both magnetisation and av-
erage domain size approach unity (i.e., the equilibrium
value) when the system size is increased (Fig. 3). This is
true for any finite value of p �= 0. The apparent blocking
effect is more prominent for small values of p.

The comparison of m(t) and D(t) for different system
sizes also shows that the initial growth becomes rapidly
sharper with the system size, so that any time dependence
in the initial period loses its significance. The period over
which this growth takes place also shrinks in size in larger
system sizes (Fig. 3) signifying a very fast growth in the
magnetization.

The study of the distribution of magnetisation is also
consistent with the fact that blocking occurs for finite sizes
only. The distribution has finite values for all values of m
(−1 < m < 1) for small N , but for larger sizes has non-
zero values very close to m = ±1 only.

The fast growth in m(t) and D(t) is supported by the
behaviour of Er(t) and Nflip(t) as both show an exponen-
tial decay (Er(t), Nflip(t) ∼ exp(−αt)) with α = 1 for all
p (Fig. 4).
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Fig. 3. Magnetization m(t) as function of t for different system
sizes at p = 0.005 is shown. Saturation value is higher for larger
size at a particular p implying that blocking is a finite size effect
here. This behaviour is true for all p > 0. The domain size D(t)
shows similar behaviour.

 

    

Fig. 4. Nflip(t) and scaled residual energy Er(t)/p as function
of t for two different values of p (p = 0.1 and 0.8) with the sys-
tem size N = 1000. Both Nflip(t) and Er(t) follow exponential
decay as exp(−αt) with α = 1 for all p and all system sizes.
The straight lines have slope = 1.

Freezing probability

The above observations suggest that for finite sizes,
the probability that the system goes to a frozen state is
finite for small values of p. Since for the limiting cases
p = 1 and p = 0, there is no freezing, it is expected that
the freezing probability F (p) will have a peak for a non-
zero value of p. We study the freezing probability for fixed
values of N and find out some interesting features. There
is indeed a peak occurring at p = pm with pm ∼ 1/N .
Except for very small values of p, F (p) decreases with N
signifying the disappearance of freezing in the thermody-
namic limit. For small values of p, the behaviour may be
different. Specifically, if p = 1/N , we find that the freez-
ing probability increases with N , which is in consistency
with the observation of [19]. But at this value of p, the
network is a sparsely connected one and therefore it has a
freezing tendency indicated by this increase. In fact, keep-
ing p fixed at a certain value such that p < pm (for the
system sizes concerned) we find that the freezing tendency
gets enhanced with N . Also, we find that F (p) shows an

 

 

 

 

Fig. 5. Freezing probability F (p) as a function of p for dif-
ferent system sizes. F (p) has a peak which shifts towards zero
for larger N . The tail of F (p) follows exponential decay as
exp(−γp) with γ ∼ N shown by the dotted lines. Inset shows
F (p) against 1/N for p = 1/N .

 

 

Fig. 6. Persistence P (t) as a function of time t for different
probability p for system size N = 500. P (t) follows the well
known power law decay as t−θ with θ = 0.375 at p = 0. At
finite p, P (t) decays to a constant value within a few time
steps. For higher p, the decay is even faster and the dynamics
stops earlier.

exponential decay beyond pm: F (p) ∼ exp(−γp) for large
values of p with γ ∼ N .

These results (shown in Fig. 5) indicate again that
freezing disappears for any non-zero p for large values of
N as long as p is a finite quantity.

In reference [15], it had been shown how the domain
walls get pinned when the number of extra bonds is O(N),
i.e., p ∼ 1/N and the system freezes. The domain walls
become mobile as soon as the number of long range inter-
actions increase to O(N2) and ultimately they disappear
by annihilating each other. Thus, in a densely connected
infinite network, freezing disappears for any p �= 0.

We next study the behaviour of the persistent prob-
ability P (t) with time for different values of p (Fig. 6).
P (t) follows the well known power law decay for p = 0,
but quickly falls to a finite saturation value Psat for any
non-zero value of p. The decay is sharper for higher values
of p. The saturation behaviour is similar to that of D(t)
and m(t).
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Fig. 7. Saturation value of P (t) as a function of p for different
system sizes.

The behaviour of Psat with different system sizes how-
ever, shows an interesting feature. In a finite d-dimensional
lattice of size L, when P (t) decays algebraically in time
with the exponent θ, the persistent probability as a func-
tion of t and L is given by

P (L, t) ∼ t−θf(t/Lz), (2)

where f(x) = constant for small x and f(x) = xθ for large
x such that P (L, t → ∞) ∼ L−zθ which indicates that the
time independent persistence probability decreases with
N , where N = Ld, the total number of lattice sites. For
non-zero values of p, when there is no algebraic decay of
the persistent probability with time, we find that (Fig. 7)
there exists a value of p = p∗ below which the persistence
probability actually increases with N , the increase with N
being slower than a power law. Beyond p∗, Psat decreases
with N but the decrease is fairly weak. However for both
p < p∗ and p > p∗, P (N, t, p) approaches a constant close
to 0.5 from below and above respectively. That the satura-
tion value of the persistence probability is close to 0.5 can
be justified: initially fifty percent spins are up/down, and
spins of only one type are flipped only within the short
time the system reaches the equilibrium state. The value
of p∗ � 0.25.

5 Summary and conclusions

We have studied the dynamics of the ferromagnetic Ising
model on a small-world network at zero temperature. The
network is densely connected in the sense that there is a
finite number of extra bonds for each node. It is observed
that addition of long range bonds with probability p brings
the initial random configuration of Ising spins to the equi-
librium ferromagnetic configuration within a very few time
steps even if p is very small. Magnetisation and average
domain size quickly reach the saturation values without
showing any scaling behaviour with time. Consistent with
this observation, the residual energy and the number of

flippings at any time shows an exponential decay. The
study of the freezing probability shows a peak occurring
in the distribution at pm ∼ 1/N and an exponential de-
cay which becomes faster with the system size. Persis-
tence probability also reaches a saturation value within a
few time steps. These results obtained for the quenching
dynamics indicate that the dynamical behaviour of this
densely connected network is much different compared to
that of random graphs and sparsely connected SWN where
the same dynamics leads to a frozen state not equivalent to
the equilibrium ground state. That there is no power law
behaviour but exponential relaxation is consistent with
the mean field behaviour of the network [30].

In order to explain our observations, we notice that the
present model is highly clustered as the density of connec-
tions is large (see Sect. 3). In contrast, the addition type
small world network (with two nearest neighbour only),
generated with a p ∼ 1/N has a vanishing clustering coef-
ficient even though it has small world property [32]. This
is in fact the reason for its behaviour as a random graph
which also has a small world effect but vanishing clustering
coefficient. The large clustering in our model is effective in
making the domains entirely non-local and therefore the
system can reach the global equilibrium state very fast.
The super small world effect, by which we mean that the
average shortest distance decreases with N (tending to
unity), also helps in understanding the results. For any
p �= 0, the network flows towards the p = 1 fixed point
(for large sized networks) for which one does not expect
any freezing.

Our results are consistent with some very recent ob-
servations [19] where the dynamics of Ising model on a
scale free network with increasing number of connectiv-
ity k = pN has been studied. From the data shown, one
can obtain the freezing probability as a function of a fixed
p (e.g., p = 0.1) as well, which shows that freezing will
disappear for large system sizes.

Usually persistence probability has a unique behaviour
and is governed by an independent exponent θ not re-
lated to the dynamic exponent z which dictates the
behaviour of D(t), m(t), Er(t) and Nflip(t). Here one can-
not make any statement about the independence of per-
sistence and the domain growth phenomena. The only dis-
tinctive behaviour of persistence seems to be a difference
in behaviour with finite sizes occurring for p < p∗ where
p∗ � 0.25. At present our understanding of the network
and the dynamics is not enough to explain the significance
of p∗, although the limiting value of the persistence prob-
ability being 0.5 is easily explained from the mean field
nature of the network.

From the results reported in the present paper, we con-
clude that for quenching dynamics, for any p ≤ 1/N the
time evolution leads to a frozen state far from equilibrium
whereas with a finite p freezing is overcome. The finite
density of connections thus acts as a driving force, like
a finite temperature, which drives the system out of the
frozen state. This may appear as a dynamical phase tran-
sition in finite systems, however, in the thermodynamic
limit (N → ∞) of course, there is no such transition.
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We finally remark that as far as statics is concerned,
a finite value of p is not required to get a phase transition
but the finiteness of p is essential to remove the dynamic
frustration when dynamics is considered.
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sions. P. K. Das acknowledges support from CSIR grants no.
9/28(608)/2003-EMR-I. PS acknowledges DST grant number
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